Amazon SageMaker
The easiest way to get started with TensorFlow on AWS is using Amazon SageMaker, a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy TensorFlow models quickly. SageMaker assists with each step of the machine learning process to make it easier to develop high quality models. Data scientists can also use SageMaker with TensorBoard to save development time by visualizing the model architecture to identify and remediate convergence issues, such as validation loss not converging or vanishing gradients. To get started with TensorFlow and TensorBoard on SageMaker, use the following resources:
AWS Deep Learning AMI
AWS Deep Learning AMIs are machine images pre-installed with TensorFlow, allowing you to quickly experiment with new algorithms or learn new skills and techniques. To get started, see the TensorFlow on AWS Deep Learning AMIs tutorials below.
AWS Deep Learning Containers
AWS Deep Learning Containers are Docker images pre-installed with TensorFlow to make it easy to deploy custom machine learning environments quickly by letting you skip the complicated process of building and optimizing your environments from scratch. To get started with TensorFlow on AWS DL Containers, use the following resources:
- TensorFlow on Amazon EC2: Training | Inference
- TensorFlow on Amazon ECS: Training | Inference
- TensorFlow on Amazon EKS: Training | Distributed Training | CPU Inference | GPU Inference
Amazon EC2 Inf1 instances/ AWS Inferentia
Amazon EC2 Inf1 instances are built from the ground up to support machine learning inference applications. Inf1 instances feature up to 16 AWS Inferentia chips, high-performance machine learning inference chips designed and built by AWS. Inf1 instances deliver up to 3x higher throughput and up to 40% lower cost per inference than Amazon EC2 G4 instances, which were already the lowest cost instance for machine learning inference available in the cloud. Using Inf1 instances, you can run large scale machine learning inference with TensorFlow models at the lowest cost in the cloud. To get started, see our tutorial on running TensorFlow models on Inf1.
Amazon Elastic Inference
Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and SageMaker instances or Amazon ECS tasks, to reduce the cost of running inference with PyTorch models by up to 75%. To get started with TensorFlow on Elastic Inference, see the following resources.