Возможности AWS Clean Rooms

Создайте clean rooms за считаные минуты. Сотрудничайте со своими партнерами, не передавая необработанные данные.

Что такое AWS Clean Rooms?

AWS Clean Rooms упрощает вам и вашим партнерам анализ и сотрудничество при работе с общими наборами данных для получения ценных выводов. При этом не нужно раскрывать другим участникам свои базовые данные. C помощью AWS Clean Rooms вы можете создавать собственные пустые комнаты за считанные минуты и приступать к анализу общих наборов данных, выполнив лишь несколько шагов. При использовании AWS Clean Rooms можно приглашать любое количество клиентов для сотрудничества, выбирать наборы данных, подбирать соответствующие записи, а затем настраивать ограничения для участников.

Shot of a young businesswoman working on a computer in an office. Portrait of an successful young creative businesswoman using PC at her workplace in the modern office

Создайте собственную пустую комнату, добавьте участников и начните совместную работу без лишних усилий

AWS Clean Rooms позволяет вам быстрее и проще развертывать собственные пустые комнаты без необходимости создавать, управлять и обслуживать свои решения. Компании также могут воспользоваться API для интеграции функций AWS Clean Rooms в свои рабочие процессы.

Сотрудничайте с любой компанией, не передавая и не раскрывая исходные данные

AWS Clean Rooms позволяет легко и быстро генерировать аналитическую информацию из данных, полученных из нескольких источников, без необходимости переносить исходные данные или предоставлять к ним доступ. Клиенты могут напрямую управлять правами на доступ к своим данным в AWS и начинать совместную работу с наборами данных своих партнеров, хранящимися в Snowflake и AWS, без извлечения, преобразования и загрузки данных (ETL).

hand together creative agency business brain storm meeting presentation Team discussing roadmap to product launch, presentation, planning, strategy, new business development
Cybersecurity and privacy concepts to protect data. Lock icon and internet network security technology. Businessmen protecting personal data on laptop and virtual interfaces.

Защитите базовые данные с помощью широкого набора средств управления пустыми комнатами, повышающих уровень конфиденциальности

AWS Clean Rooms поддерживает строгие политики обработки данных благодаря широкому набору возможностей повышения уровня конфиденциальности, включая детальные правила анализа, платформу дифференциальной конфиденциальности AWS Clean Rooms и вычисления с использованием криптографической защиты. Кроме того, вы можете использовать журналы запросов, чтобы изучить и проконтролировать процесс запросов к своим данным.

С помощью AWS Clean Rooms можно сопоставлять и связывать записи клиентов из любого приложения, канала или хранилища данных. Вы можете использовать SQL, Spark SQL или Analysis Builder для получения аналитической информации либо применять собственную модель машинного обучения и развертывать ее совместно с партнерами, не предоставляя им свою собственную модель или исходные данные.

Programer sitting on desk discussing with mixed team of software developers about artificial intelligence

Многосторонность

С помощью AWS Clean Rooms можно анализировать данные с многочисленными сторонами. Каждый участник сотрудничества хранит данные в своих учетных записях. Вы можете безопасно получать аналитическую информацию на основе своих коллективных данных и коллективных данных партнеров без необходимости писать код. Вы можете создать пустую комнату, пригласить компании, с которыми хотите сотрудничать, и выбрать, какие участники могут выполнять анализы SQL или генерировать прогнозирующие выводы в AWS Clean Rooms ML в рамках совместной работы.

Совместная работа с данными там, где они хранятся

С помощью AWS Clean Rooms вы можете легко совместно работать с данными нескольких сторон без необходимости перемещать необработанные данные или делиться ими. Вы можете напрямую разрешить хранение своих данных в AWS и начать совместную работу с наборами данных ваших партнеров, хранящимися в Snowflake и AWS, без извлечения, преобразования и загрузки (Zero-ETL). Когда вы сопоставляете записи, выполняете запросы, обучаете модель машинного обучения или генерируете аналитические прогнозы, AWS Clean Rooms считывает данные там, где они находятся. Когда вы используете Разрешение сущностей AWS в AWS Clean Rooms, базовые данные, используемые для настройки набора данных, который сопоставляется с идентификаторами нескольких соавторов, никогда не передаются сотрудникам. При использовании анализа SQL-запросов можно указать правила и ограничения SQL-запросов, допустимые для данных, которые автоматически применяются для защиты базовых данных каждого участника. Кроме того, можно настроить ограничения выходных данных, например минимальные пороги для объединений. При использовании AWS Clean Rooms ML базовые данные, используемые для обучения модели или генерирования аналогичного сегмента, никогда не передаются сотрудникам и не используются AWS для обучения моделей.

Полный программный доступ

Помимо Консоли управления AWS, все функциональные возможности AWS Clean Rooms доступны через API. Вы сможете использовать пакеты средств разработки (SDK) AWS или интерфейс командной строки, чтобы автоматизировать операции AWS Clean Rooms, интегрировать функциональные возможности Clean Rooms в имеющиеся рабочие процессы и продукты либо создать собственную версию предложения Clean Rooms для своих клиентов.

Разрешение сущностей AWS в AWS Clean Rooms

Благодаря Разрешению сущностей AWS в AWS Clean Rooms вам и вашим сотрудникам будет проще готовить и сопоставлять соответствующие записи клиентов в рамках совместной работы AWS Clean Rooms с улучшенной конфиденциальностью. Применяя специальные методы, основанные на правилах или поставщиках услуг обработки данных, вы можете улучшить сопоставление данных для таких примеров использования, как планирование, таргетинг и оценка эффективности рекламных кампаний. Вы можете использовать настраиваемую логику сопоставления или наборы данных и идентификаторы от надежных поставщиков услуг данных, таких как LiveRamp, для соединения записей из разных устройств, платформ и каналов.

Гибкий SQL

Правила анализа – эти ограничения предоставляют вам встроенные способы контроля использования данных. Участники совместной работы, создающие или присоединяющиеся к ней в качестве назначенных исполнителей запросов, могут писать запросы для пересечения и анализа таблиц данных в соответствии с установленными правилами анализа. AWS Clean Rooms поддерживает три типа правил анализа: объединение, список и настройка.

Правило анализа «объединение»: правило анализа «объединение» позволяет выполнять запросы, генерирующие объединенную статистику, например размер пересечения двух наборов данных. Используя правило анализа «объединение», можно обеспечить выполнение только объединенных запросов к данным и наложить ограничения на определенные части выполняемых запросов, например на то, какие столбцы должны использоваться только в слепом совпадении и какие столбцы могут быть использованы в объединениях, таких как суммы, подсчеты или средние значения. Вы также управляете минимальным ограничением объединения в выходных данных.  Кроме того, можно установить минимальные ограничения для объединений, которые дают возможность устанавливать условия для возвратов строк выходных данных. Эти ограничения устанавливаются в форме COUNT DISTINCT (Столбец) ≥ Порог. Если строка выходных данных в результатах запроса не соответствует ни одному из ограничений, она удаляется из набора результатов. Это помогает обеспечить автоматическое применение минимальных пороговых значений для объединения, а также обеспечивает гибкость для участников совместной работы с данными, которые могут писать запросы по своему усмотрению.

Правило анализа «списки»: правило анализа «списки» позволяет выполнять запросы, извлекающие список пересечения нескольких наборов данных на уровне строк, например перекрытия двух наборов данных. Используя правило анализа «списки», можно обеспечить выполнение только запросов списков к данным и наложить ограничения на выполняемые запросы, например на то, какие столбцы должны использоваться только в слепом совпадении, а какие можно выводить в виде списка в выходных данных.

Правило «настраиваемый анализ»: правило «настраиваемый анализ» позволяет создавать собственные запросы, используя большинство стандартных SQL-запросов ANSI, таких как общие табличные выражения (CTE) и оконные функции. Кроме того, можно просматривать и разрешать запросы до того, как участники совместной работы их запустят, и проверять запросы других участников, прежде чем им будет разрешено выполнять их в ваших таблицах. При использовании правила анализа «настройка» вы можете использовать встроенные средства управления, чтобы заранее определить или ограничить способы анализа базовых данных вместо того, чтобы полагаться на журналы запросов после завершения анализа. При использовании настраиваемых SQL-запросов вы также можете создавать или использовать шаблоны анализа для хранения настраиваемых запросов с параметрами при совместной работе. Это позволяет клиентам легче помогать друг другу в совместной работе. Например, участник, обладающий большим опытом работы с SQL, может создавать шаблоны, которые другие участники могут просматривать и, возможно, запускать. Это также упрощает повторный анализ в ходе совместной работы. Можно также использовать дифференциальную конфиденциальность AWS Clean Rooms, выбрав собственное правило анализа, а затем настроив параметры дифференциальной конфиденциальности.

Дифференциальная конфиденциальность

Дифференциальная конфиденциальность AWS Clean Rooms помогает защитить конфиденциальность пользователей с помощью удобных средств управления на основе математических алгоритмов. Дифференциальная конфиденциальность – это строгое математическое определение защиты конфиденциальности данных. Однако, настройка этого метода сложна и требует глубокого понимания теории и математически строгих формул для ее эффективного применения. Дифференциальная конфиденциальность AWS Clean Rooms – это интуитивно понятная и полностью управляемая функция AWS Clean Rooms, которая помогает предотвратить повторную идентификацию пользователей. Чтобы использовать эту функцию, не обязательно иметь опыт работы с дифференциальной конфиденциальностью. Дифференциальная конфиденциальность AWS Clean Rooms скрывает вклад данных любого человека в объединенные выходные данные совместной работы AWS Clean Rooms и помогает выполнять широкий спектр SQL-запросов для получения информации о рекламных кампаниях, инвестиционных решениях, клинических исследованиях и многом другом. Вы можете настроить дифференциальную конфиденциальность AWS Clean Rooms, применив собственное правило анализа при совместной работе с AWS Clean Rooms. Затем вы можете настроить дифференциальную конфиденциальность AWS Clean Rooms с помощью элементов управления, гибко подстраиваемых под конкретные бизнес-сценарии использования и применяемых всего за несколько шагов. Дифференциальная конфиденциальность AWS Clean Rooms упрощает реализацию дифференциальной конфиденциальности при совместной работе с AWS Clean Rooms с помощью нескольких простых вариантов, и все это без дополнительных знаний или настроек со стороны партнеров.

Настраиваемые роли

Настраивая совместную работу в AWS Clean Rooms, можно указать разные возможности для каждого участника совместной работы в соответствии с конкретными сценариями использования SQL-запросов. Например, если вы хотите, чтобы выходные данные запроса перешли к другому участнику, вы можете назначить одного участника исполнителем SQL-запросов, который может писать запросы, а другого участника – получателем результатов SQL-запроса, который может получать результаты. Это дает автору совместной работы возможность убедиться в том, что участник, который может отправить запрос, не имеет доступа к результатам запроса. Настраивая совместную работу, вы также можете настроить обязанности по оплате SQL-запросов и назначить выбранного участника, которому будет выставляться счет за расходы на вычисления запросов при совместной работе вместо того, чтобы выставлять счета автоматически исполнителю запроса. Это позволяет более гибко работать вместе с партнерами и распределять обязанности SQL вместо того, чтобы привязывать их к исполнителю запросов.

Без конструктора анализа кода

С помощью Analysis Builder бизнес-пользователи могут получать аналитические сведения за несколько простых шагов без необходимости писать или понимать SQL. В управляемом пользовательском интерфейсе вы можете создавать запросы, соответствующие ограничениям данных, установленным каждым сотрудником в своих таблицах, на основе автоматически предложенных критериев, таких как метрики, сегменты и фильтры, относящиеся к вашим коллективным наборам данных. Используйте Analysis Builder в совместной работе, в которой есть одна или две таблицы, настроенные на правило объединения или анализа списков.

Машинное обучение, повышающее конфиденциальность

Сервис машинного обучения AWS Clean Rooms ML помогает вам и вашим партнерам применять машинное обучение в соответствии с правилами защиты конфиденциальности, чтобы выполнять прогнозную аналитику без необходимости обмена необработанными данными. Сервис AWS Clean Rooms ML поддерживает настраиваемое моделирование машинного обучения и моделирование машинного обучения по схожим признакам. Настраиваемое моделирование позволяет использовать собственную модель для обучения и выполнять логические выводы на основе совокупных наборов данных, не передавая сотрудникам базовые данные или интеллектуальную собственность. Моделирование по схожим признакам позволяет использовать модель, разработанную AWS, для создания расширенного набора схожих профилей на основе небольшой выборки профилей, которые ваши партнеры используют в рамках сотрудничества.

Сервис AWS Clean Rooms ML эффективен в нескольких сценариях использования. Например, рекламодатели могут использовать свою собственную модель и данные для сотрудничества в Clean Rooms и предложить издателям объединить свои данные для обучения и внедрения настраиваемой модели машинного обучения, которая поможет им повысить эффективность кампаний. Финансовые учреждения могут использовать записи транзакций за предыдущие периоды для обучения настраиваемой модели машинного обучения и приглашать партнеров к сотрудничеству в рамках Clean Rooms для выявления потенциально мошеннических транзакций. Исследовательские учреждения и сети больниц могут найти кандидатов, похожих на существующих участников клинических исследований, чтобы ускорить клинические испытания. Бренды и издатели могут моделировать похожие сегменты клиентов на рынке и предоставлять самые актуальные рекламные материалы, не передавая друг другу основные данные.

Моделирование по схожим признакам AWS Clean Rooms ML на базе авторизованной AWS модели было создано и протестировано на различных наборах данных, таких как электронная коммерция и потоковое видео, и повышает точность моделирования по схожим признакам до 36 % по сравнению с репрезентативными отраслевыми базовыми показателями. В реальных приложениях, таких как поиск новых клиентов, такое повышение точности может привести к экономии миллионов долларов.

Криптографические вычисления

Можно выполнять запросы AWS Clean Rooms для данных, имеющих криптографическую защиту. Если у вас есть политики обработки данных, требующие шифрования конфиденциальных данных, вы можете предварительно зашифровать свои данные с помощью общего ключа, предназначенного для конкретной совместной работы, чтобы данные оставались зашифрованными даже при выполнении запросов. Криптографические вычисления сохраняют шифрование данных, используемых для совместных вычислений: в месте хранения, при передаче и при использовании (обработке).

Криптографические вычисления для Clean Rooms (C3R) – это Java SDK с открытым исходным кодом и интерфейс командной строки, который доступен на GitHub. Эта функция доступна без дополнительной оплаты. Если у вас есть большие данные, вы можете ознакомиться с документацией, чтобы узнать, как можно интегрировать C3R в Apache Spark.

Эта функция является последней из широкого спектра инструментов для криптографических вычислений AWS, разработанной для того, чтобы помочь вам достичь целей безопасности и соответствия нормативным требованиям, позволяя при этом воспользоваться гибкостью, масштабируемостью, производительностью и простотой использования, которые предлагает AWS.