SageMaker Canvas란 무엇인가요?
Amazon SageMaker Canvas는 코드를 사용하지 않는 시각적 인터페이스로서, 데이터를 준비하고 매우 정확한 ML 모델을 구축 및 배포하여 통합 환경에서 전체 ML 수명 주기를 간소화할 수 있습니다. SageMaker Data Wrangler에서 제공하는 포인트 앤 클릭 상호 작용과 자연어를 통해 페타바이트 규모의 데이터를 준비하고 변환할 수 있습니다. AutoML의 강력한 기능을 활용하여 SageMaker Autopilot에서 지원하는 회귀, 분류, 시계열 예측, 자연어 처리 및 컴퓨터 비전을 위한 사용자 지정 ML 모델을 자동으로 구축할 수 있습니다. 또한 클릭 몇 번으로 Amazon Bedrock 및 SageMaker JumpStart의 파운데이션 모델에 액세스하고, 평가하고, 미세 조정하고, 배포할 수 있습니다. Canvas는 팀 간의 협업을 촉진하고 생성된 코드에 투명성을 제공하며 모델 버전 관리 및 액세스 제어를 통해 거버넌스를 보장합니다. Canvas를 사용하면 코딩 전문 지식에 관계없이 비즈니스 요구 사항에 맞게 사용자 지정 ML 모델을 빠르게 구축하거나 파운데이션 모델을 미세 조정하여 혁신을 가속화하고 생산성을 높일 수 있습니다.
SageMaker Canvas의 이점
ML 수명 주기 전반에 구축
시각적인 노코드 인터페이스를 통해 Data Wrangler로 데이터 준비, Autopilot으로 AutoML 모델 훈련을 비롯한 엔드 투 엔드 기계 학습 기능을 활용하세요.
1
자연어 및 포인트 앤 클릭으로 페타바이트 규모의 데이터 준비
- Amazon S3, Athena, Redshift, Snowflake, Databricks 등 50개 이상의 소스에서 데이터에 액세스하고 데이터를 가져옴
- 300개 이상의 사전 구축된 분석 및 변환을 통해 데이터 품질 및 모델 성능 개선
- 자연어를 활용하여 데이터 분석 및 변환
- 직관적인 로우코드/노코드 인터페이스로 데이터 파이프라인을 시각적으로 구축 및 개선
- 몇 번의 클릭으로 페타바이트 크기의 데이터로 확장
2
여러 문제 유형에 대한 모델 훈련 및 평가
- AutoML의 강력한 기능을 활용하여 특정 사용 사례에 맞게 모델을 자동으로 탐색하고 최적화
- 단 몇 번의 클릭으로 회귀, 분류, 시계열 예측, 자연어 처리, 컴퓨터 비전, 파운데이션 모델 미세 조정을 위해 모델 훈련
- 객관적 지표, 데이터 분할, 알고리즘 선택 및 하이퍼파라미터와 같은 모델 제어를 위한 유연한 옵션을 사용하여 모델 훈련 맞춤화
- 대화형 시각화 및 모델 설명을 통해 모델 성능에 대한 인사이트 확보
- 모델 리더보드에서 가장 성능이 좋은 모델을 선택하고 생성된 코드를 내보내 추가 사용자 지정 가능
3
대규모로 정확한 예측 생성 - 배치 또는 실시간
- 애플리케이션 내에서 직접 대화형 예측 및 가정(What-if) 분석을 수행합니다.
- 클릭 한 번으로 모델을 SageMaker 엔드포인트에 배포하여 실시간 추론을 수행하거나, 임시로 또는 자동화된 일정으로 배치 예측을 실행할 수 있습니다.
- SageMaker Model Registry에 모델을 등록하여 거버넌스 및 버전 제어 보장
- 고급 사용자 지정 및 협업을 위해 Amazon SageMaker Studio로 모델을 원활하게 공유
- 향상된 의사 결정을 위해 Amazon QuickSight를 사용하여 예측을 시각화하고 이해 관계자와 공유
파운데이션 모델로 구축
- 작업에 가장 적합한 파운데이션 모델을 쉽게 비교하고 선택 가능
- 레이블이 지정된 훈련 데이터세트를 사용하여 클릭 몇 번으로 비즈니스 사용 사례에 맞게 파운데이션 모델 미세 조정
생성형 AI를 활용하세요.
- Amazon Kendra에 저장된 자체 문서 및 지식 기반을 쿼리하여 맞춤형 출력을 생성합니다.
- 대화형 시각화, 모델 설명, 리더보드를 통해 모델 성능에 대한 인사이트 확보
- 가장 적합한 파운데이션 모델을 프로덕션화하고 실시간 SageMaker 엔드포인트에 배포
협업 및 거버넌스 보장
ML을 대중화하면서 팀 간 협업을 촉진하세요. 거버넌스 및 MLOPs를 위한 모델 공유 및 다른 AWS 서비스와의 통합을 지원합니다.
1
팀 간 협업 및 지식 공유 촉진
- SageMaker Studio와 손쉬운 모델 공유를 통해 데이터 과학자 및 전문가와 협업
- Canvas 작업 공간 내에서 데이터 과학자가 구축한 모델을 사용하여 예측 생성
- 자동 생성된 노트북을 통한 코드 투명성으로 신뢰 증대
- Amazon QuickSight 대시보드를 통해 이해 관계자와 모델, 예측 및 인사이트 공유
- 버전 제어를 유지하고 계보 추적을 모델링하여 팀 전체의 재현성과 추적성 보장
2
거버넌스 및 MLOps 모범 사례 보장
- 안전한 모델 관리를 위한 세분화된 사용자 수준 권한 및 액세스 제어 구현
- Single Sign-On(SSO) 기능으로 원활한 인증 지원
- SageMaker Model Registry에 모델을 등록하여 모델 거버넌스 및 버전 관리 준수
- 추가 사용자 지정 및 통합을 위해 모델 노트북을 내보내 MLOps 파이프라인 간소화
- 자동 종료 기능으로 비용 및 리소스 활용도 최적화